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Shock waves have been observed travelling in a closed gas-filled tube when the gas is 
excited by a piston operating at  half the fundamental frequency of the tube. Linear 
theory predicts a continuous periodic solution, while its first correction in a regular 
expansion is unbounded at  such a quadratic resonant frequency. To take account of 
the intrinsic nonlinearity of travelling waves, a finite-rate theory of resonance is 
necessary. The periodic motion is then calculated from discontinuous solutions of a 
functional equation. Two of the three weak-shock conditions and the entropy con- 
dition are inherent in the functional equation, and hence the addition of the equal-area 
rule to fit shocks ensures uniqueness of the solutions. 

1. Introduction 
When a gas in a closed tube is driven by an oscillating piston whose frequency w is 

a multiple of the fundamental frequency of the tube, wl, there is no bounded periodic 
motion within acoustic theory. Multiples of the fundamental frequency are the linear 
resonant frequencies, wj =jq. The first correction to linear theory in a regular 
expansion in powers of the dimensionless piston amplitude E is also unbounded at  the 
quadratic resonant frequencies, SZ, = i(2n + l ) w l ;  see Zarembo (1967) or Mortell & 
Seymour (1979). Thus, when w = f i n  the acoustic solution has frequency Q, and the 
quadratic nonlinearity then gives rise to a forcing term with frequency 2Q,, which is 
a linear resonant frequency. In  the theory of ordinary differential equations this 
phenomenon is referred to as superharmonic resonance of order 2 ;  see Nayfeh & Mook 
(1979). In this paper we extend the finite-rate theory of resonant acoustic oscillations, 
given in Seymour & Mortell (1980) for the linear resonance region, to frequencies in 
the quadratic resonance region. 

It was shown in Mortell & Seymour (1979) that the problem of calculating finite- 
rate forced oscillations of a gas in a closed tube could be reduced to finding periodic 
solutions of a functional equation. Finite-rate oscillations occur when the piston 
frequency and amplitude are such that there is appreciable distortion in the wave form 
in travelling the length of the tube. This distortion is characterized by the similarity 
parameter A = 27r(y + l)ew2, where y is the gas constant (1-4 for air). Any experiment 
can be associated with a point in the A-A plane, where A = ~ ( w - w , )  measures the 
detuning from a linear resonant frequency. The A-A plane is divided by a transition 
curve into a region in which continuous periodic solutions exist, and where they do not. 
Discontinuous solutions, corresponding to frequencies in t'he linear resonance region, 
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were constructed in Seymour & Mortell (1980). Here we construct discontinuous 
solutions corresponding to  piston frequencies in the quadratic resonance region, 
I w -  fin/ < +(+-A,(A)). This is done by using the fixed points of order 2 of the 
functional equation, appropriate to quadratic resonance. Such a fixed point corres- 
ponds physically t,o a ‘resonating wavelet’ in the propagating signal; i.e. an amplitude 
in the wave form which completes two cycles in the tube in an odd multiple of the 
piston period. Fixed points of order 1, appropriate to linear resonance, correspond 
to  wavelets which complete one cycle in a multiple of the piston period. 

The character of solutions in the quadratic-resonance region depends strongly on 
the magnitude of A.  I n  the small-rate region A < 1 ,  the solution of the functional 
equation contains two discontinuities per period. These discontinuities, whose 
strengths are approximately equal and depend on the value of A - Aq(A), are separated 
by half a period. When A < AJA) the solutions are continuous. The signal shape in 
the small-rate region can be explicitly determined from a nonlinear ordinary differen- 
tial equation which may be simply derived from the functional equation, as in 95. 
Shocks are not inherent in the small-rate differential-equation theory in which the 
signal propagates according t,o linear theory. As a consequence it does not yield a 
unique solution, even with the addition of t’he entropy condition to ensure that 
discontinuities are compressive. Small-rate quadratic-resonance solutions, based on 
the theory of Chester (1964) for linear resonance, have been given by Galiev, Ilgamov 
& Sodykov (1970) and Keller (1975). 

I n  the finite-rate region, corresponding approximately to A > 0.1, the solution of 
the functional equation contains a t  least two discontinuities per period. These are not 
of equal strength, are not equally spaced, and their number depends on A - Aq(A). 
Now A = A,(A) does not correspond to the transition from discontinuous to continuous 
solutions. The functional equation admits discontinuous solutions which automatically 
satisfy two of the three weak shock conditions and the entropy condition. Conse- 
quently, the addition of the equal-area rule uniquely determines the discontinuous 
solutions. 

Periodic motions containing shocks have been observed at frequencies in the 
quadratic-resonance region by Galiev et al. (1970) and Zaripov & Ilgamov (1976). For 
the experiments of Galiev et al. (1970), the similarity parameter was in the interval 
0.025 < A < 0.05 i.e. in the small-rate range A < 0.1, and Correspond to B = 0.0327. 
I n  the experiments of Zaripov & Ilgamov (1976), the effective piston amplitude was 
6 = 0.1244, with A in the interval 0.09 < A < 0.19. 

The basic functional equation (2.9) gives a certain unity to the theory of nonlinear 
forced oscillations in a closed tube. It predicts the continuous motions away from the 
resonances, and the discontinuous motions in the various resonance regions. Equation 
(2.9) also arises in a number of problems in nonlinear dynamics, where it can exhibit 
chaotic, or stochastic, solutions, even though the governing equations are determinis- 
tic. The continuous solutions within the transition curve of the A-A plane are the 
KAM surfaces (Kolmogorov, Arnol’d and Moser), see Greene (1979). The chaotic 
solutions occur for those values of A and A for which the wave form will break in one 
cycle in the tube, see Mortell & Seymour (1980). It is interesting to  note that the 
restricted three-body problem of celestial mechanics has been reduced to the study of 
an area-preserving mapping and that the problem of ‘small divisors ’ has been resolved 
in this context, see Moser (1 962). 
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2. Formulation 
A column of gas, of length L in some reference state, is contained in a pipe which is 

closed at  one end. A t  the other end there is a reciprocating piston. In  terms of the 
variables aou, poagp, L x ,  La;lt it has been shown in Mortell & Seymour (1979)  that, 
to first order, for the isentropic flow of an ideal gas 

P = - f (P)-g@),  u = f ( P ) - g ( 4 ,  (2 .1 )  

where a =  w ( t - x ) - u M x g ( a ) ,  p = w ( t + x - l ) + w M ( x - l ) f ( P ) .  ( 2 . 2 )  

In equations (2 .1 )  and (2 .2 ) ,  yp  is the excess pressure ratio, u the (dimensionless) 
particle velocity, a, and po are the reference sound speed and density, and 1M = $(y + 1 )  
where y is the ratio of specific heats. The small-amplitude Lagrangian representations 
(2 .1 )  and (2 .2 )  are correct to O( f 2 ,  g2). 

The periodic piston displacement has the form &(wt) where E (  < 1 )  and w are the 
dimensionless piston amplitude and frequency, with %(y) = fE(y + 1 ) .  Then the piston 
velocity, h(y) = E&'(Y), has unit period and zero mean value. Hence the boundary 
conditions have the form 

~ ( 0 ,  t )  = 0, U (  I ,  t )  = h(wt).  (2 .3 )  

The unknown Riemann invariants, f and g, in the representation (2 .1 )  are determined 
from the boundary conditions (2 .3 ) .  Eliminating g from equations (2 .1) - (2 .3)  implies 
that f satisfies the functional equation 

f(r) =f(s)+h(rl), 7 = s+2w+2wiMf(s ) ,  (2 .4 )  

wheregisrelatedtofby g ( $ + w + w M f ( $ ) )  =f($). (2 .5 )  

When the motion of the gas is periodic, f further satisfies f(y) = f(y + 1 )  and the mean 

condition f(y) dy = 0; see Seymour & Mortell (1973) .  
J O 1  

Linear theory, which is recovered by setting M = 0 in equations (2 .2 ) ,  (2.4) and 
(2 .5 ) ,  fails to produce a bounded periodic solution when w = w j  = 4j, j = 1 , 2 , 3 ,  ..., 
the linear resonant frequencies. It is shown in Zarembo (1967)  that the first correction 
to linear theory in a regular expansion in powers of e has no bounded solution of unit 
period when 

(2 .6 )  

We call the frequencies w = 52, quadratic resonant frequencies. 
Here we use the representation (2 .1 ) ,  (2 .2 ) ,  (2.4), (2 .5 )  to describe the periodic 

motion of the gas for piston frequencies in a region containing a quadratic resonant 
frequency. We calculate periodic solutions f of equation (2.4) and hence determine 
the pressure and particle velocity in the tube from equations (2 .1 ) ,  (2 .2 )  and (2 .5) .  
Defining 

(2 .7 )  

w = = 4(2n  + 1 ), n = 0, 1 , 2 ,  . . . . 

A = l  + 2 (w - sr,) = 2(w - w,), 6Jo = 0, 

F(Y)  = 2WMf(Y) + A, f u Y )  = 2wMh(y), (2.8) 
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FIGURE 1. Transition curve in A-A plane, the linear-resonance region, 0 < A f A,(A), and the 
quadratic-resonance region A&A) < A 6 4. 

where li’ has unit period and satisfies the mean condition 

sD’F(7) d7 = A* (2.10) 

Equations (2.9) and (2.10) are the basic equations from which the periodic oscillations 
for any frequency are determined. For the sinusoidal piston motion 

h(wt) = 2new sin ( 2 7 x 4 ,  
normally used in experiments, 

H(7)  = A s i n ( 2 ~ 7 ) ,  (2.11) 

and hence the similarity parameter is A = 4rrMcw2. Clearly, specifying the experi- 
mental parameters (6, w ,  M )  determines a unique point in the A-A plane. Similarly, 
given a solution curve F of equation (2.9) for a particular value of A,  equat’ion (2.10) 
uniquely associates a point in the A-A plane with F .  Thus each solution curve F is 
associated with a single experiment for each mode number n. 

Equations (2.9)-(2.11) were derived in Seymour & Mortell(1973), and were approxi- 
mated by a nonlinear ordinary differential equation in the region \ A \  4 1, A 4 1. 
Continuous periodic solutions of equations (2.9)-(2.11) were constructed in Mortell & 
Seymour (1979). It was shown that the A-A plane is divided by a transition curve into 
regions where continuous periodic solutions can exist and where they do not; see 
figure 1 .  The transition curve is an even function of frequency about both the linear 
(A = 0) and quadratic (A = 3) resonant frequencies, and hence the solutions for all 
frequencies can be represented in the strip A 2 0, 0 ,< A 6 9. Equations (2.9) and 
(2.11) define a particularly simple area-preserving mapping, which has been named 
the ‘standard mapping ’ by Chirikov (1979). The continuous periodic curves exhibited 
in Mortell & Seymour (1979) are KAM surfaces for the standard mapping. 

Discontinuous solutions of equations (2.9)-( 2.11) in the linear resonance region, 
0 Q A < A,(A), were constructed in Seymour & Mortell (1980). These correspond to 
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gas motions containing shocks when the piston frequency is in the neighbourhood of 
a linear resonant frequency. The linear resonance region is characterized by the 
property that there is always an amplitude of the propagating signal which completes 
one cycle in the tube in an integer multiple of the period of H .  

In  this paper we construct discontinuous solutions of equations (2.9)-(2.11) in the 
quadratic, resonance region, A,(A) < A < +, of figure 1, which is defined by the property 
that there is always an amplitude of the propagating signal which completes two 
cycles in the tube in an odd multiple of the period of H .  A mathematical definition of 
A,(A) is given by equations (4.7), (4.10) and (4.13). 

The linear and quadratic resonance regions are best described by writing equation 
(2.9) as the product of two mappings: 

S : ( s , F ( s ) ) - t ( 7 , P ( 7 ) ) ,  (2.12) 

where P(7)  = F(s) ,  7 = s + F ( s ) ;  

p :  (7, P(7H-t (7, F(7)) ,  (2.13) 

where P(7)  = P(7)  + H ( 7 ) .  
S is the ‘simple wave mapping ’, measuring the accumulated distortion over a traversal 
of the tube, while P represents the effect of the input of the piston motion. A given 
function is a solution of equation (2.9) if it maps onto itself under the product PS. It 
was shown in Seymour & Mortell(l980) that solutions in the linear resonance region 
can be constructed by using the fixed points of the mapping PS. The linear resonance 
region contains those values of A and A for which the mapping PS has a fixed point. 
The quadratic resonance region contains those values of A and A for which the 
mapping (PS)2 has a fixed point. Thus different resonance regions in the A-A plane 
can be characterized by the existence of fixed points of the mapping Inside the 
transition curve of figure 1 (where the solutions are continuous) there are no fixed 
points of the mapping (PS)n for any n. Hence it is appropriate when considering the 
quadratic resonance region to work with the functional equation  PI!^)^. Physically, 
this is equivalent to following a propagating wavelet through two cycles in the tube, 
when the equations connecting F a t  successive reflections from x = 1 a t  t,imes sw-l, 

(2.14) 
rw-l and 70-1 are 

and F ( r )  = F(s )+H(r ) ,  r = s+F(s) .  (2.15) 

We now introduce the new dependent variable 

P(7)  = + H(rl), 7 = r + F(r ) ,  

Z(Y)  = F ( y )  - W ( Y )  - 3. (2.16) 

This choice is motivated by the fact that the fixed points of the mapping (PS)z  occur 
at the zeros of 2. We also note that F ( y )  = & H ( y )  + 4 is the solution of the linearized 
equations for w = an, when, like sin(%n-~), H(y++)  = - H ( y ) .  (Note the contrast 
with linear resonance, w = on, where a periodic solution does not exist within linear 
theory.) Writing equations (2.14) and (2.15) in terms of 2 a,nd eliminating Z(r )  yields 
the functional equation 

(2.17) 
z(71) = Z(S) + i H ( 7 )  + *H(s)  + H (  

7 = s + 224s) + H ( s )  + H ( r ) ,  
r = h + s  +Z(s) + $H(s) ,  

which corresponds to the mapping (PS)2. 
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The problem of solving the governing nonlinear partial differential equations of 
periodic gas motions with frequencies in the quadratic-resonance region has been 
reduced to finding solutions Z(7) of the equation (2.17) subject to the mean condition 
(2.10) on F(7) .  Once Z(7) is constructed, p and u can be found from equations (2.1)) 
(2.2), ( 2 . 5 ) ,  (2.8) and (2.16). 

3. Construction of multi-valued invariant curves 
We refer to a curve which is mapped onto itself by the equations (2.17) as an 

invariant curve. The key to constructing invariant curves lies in recognizing that 
afixed point of an invariant curfle is analogous to a critical point of an  ordinary differential 
equation. This observation was exploited in Seymour & Mortell (1980) to construct 
invariant curves in the linear resonance region. 

A fixed point (y,, 2,) of an invariant curve is defined by 

7 = s = Y,J, when Z(7) = Z(s) = 2,. (3.1) 

For equations (2.17)) the fixed points are located at  the roots, 7, and r,, of 

H ( q ) + H ( r )  = 0, 7 = r - 1  2 + ?iHW, Z(7) = 0. (3.2) 

The result that 2, = 0 is one reason for the introduction of Z ( 7 )  through equation 
(3.16). We take H to have the symmetry 

H ( y )  = - H(y + +I, (3.3) 

like the sinusoidal piston velocity used in experiments. Then the location of the fixed 
points has a simple geometric construction, and equations (3.2) become 

H(7)  = H(t ) ,  t = 7 + p ( 7 ) ,  Z(7) = 0, (3.4) 

where t = r - 4 .  Note that fi(7) = H(t(7) )  is the distortion of H ( 7 )  under the simple 
wave map t = Y,J + +H(r) .  The construction for finding the critical points re and the 
corresponding t, = r, - 4 is given in figure 2. The four distinct fixed points per period 
are located at  vC = 0,  6 ,  where t, = r/c, and a t  ye = q,, T ~ ,  where 0 < q1 < t ,  < q2 < 1. 
We note that ~,+?;r, = 1, that 7, and tl( =q,+&H(?,)) tend to 4, and that T~ and 
t2( = T~ + +H(r,))  tend to 2 as A -+ 0. As A -+ 00, ql+ 0,  v2+ I and t,, t 2+  +. By the 
symmet'ry of H ,  rl = vZ, r2 = ?jl and H ( ~ , J ~ )  = - H ( y 2 ) .  An alternative method for 
determining 7, and v2 is given in $4.2.  

A fixed point of equations (2.17) may be interpreted physically as a resonating 
wavelet in the propagating signal carrying the value Z = 0. Thus, a resonating wavelet 
carries a value off = fc such that 

(3.5) 

A solution containing a fixed point describes a signal which contains at least one 
amplitude, f = fc, which completes two cycles in the tube in an odd multiple of the 
piston period. (A calculation which exhibits this is given at  the end of $4.2.)  The 
mathematical significance of a fixed point is that the local structure of the solutions 
of the functional equation (2.17), near the fixed point, can be described by an ordinary 
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0 

-0.08 

-0.16 

FIGURE 2. Location of fixed points of equation (2.17) using both equations (3.4) and (4.14). 
-,y = A s i n Z ; - - - - - , y = A s i n ( 2 n l y + . ; t - A s i n ( 2 n y ) ] ) ; - . - * - , y =  1-47. 

differential equation. When H ( 7 )  and H ( r )  are expanded about 7 = rc and equations 
(2.17) and (3 .2)  are used, we obtain 

H ( r )  = H(llC)+Pl(l + P 1 + ~ , ~ ~ z ) Y + 2 P , a , ~ + ~ ( Y 2 , ~ 2 )  (3.6) 

and 

where p1 = H'(llC), p, = H'(rC),  ai = 1 + +pi and y = 7 - qc. Then the first of equations 
(2 .17)  yields the differential equation 

H ( r )  = -H(%)  + aIP2Y + P A +  0tY2, 2% 

dZ Z+a1y -- dy- c z + y  (3 .7)  

where c = 2a,(p1+ al,u2)-l, to describe the behaviour of the functional equation (2 .17)  
near 7 = llC and Z = 0.  The critical points rle = yl, vz,  where p l  = pz > 0, correspond 
to saddle points (or hyperbolic points). 

The saddle point,s are the key to the construction of invariant curves of equations 
(2 .17) .  There are four solution curves emanating from each saddle point (two positive 
and two negative) and in general two saddle points per period in the quadratic reson- 
ance region. The eight possible solution curves in the interval [vl, ql + l] are labelled 
Z?2(?]), W t 2 ( 7 )  with, for example, 2; and lV$ being the positive solutions leaving 
(?I,, O ) ,  Z,+ with positive slope and W,+ with negative slope (see figure 3). Differentia- 
tion of equations (2 .17)  with respect to s and setting (?], s, T )  to their respective values 
corresponding t'o yl or v Z  gives 
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FIGURE 3. Diagram to illustrate the notation for solntions emanating from 
the fixed points of equation (2.17).  

as the two possible slopes. Then it follows that 

The result (3.8) also follows from equation (3.7). Similarly, by repeated differentiation 
of equations (2.17) with respect to s, the higher derivatives of Z(q)  at  a saddle point 
can be calculated. Hence the Taylor approximation to an invariant curve in the 
neighbourhood of a saddle point can be computed to any accuracy. This procedure 
provides an init,ial segment containing a saddle point which may then be extended 
using the exact mapping (2.17). The only error introduced is in the t'runcat'ion of the 
Taylor series. This technique was int'roduced in Seymour & Mortell (1980) for the 
simpler functional equation describing flows in the linear resonance region, when 
there is usually only one saddle point per period. 

It can be shown that, if 2 = $(q)  is a solution of equations (2.17)) then SO is 
2 = -$(r).  As H ( q )  has the symmetry (3.3), the eight solutions Z,fz(q), @,,(q) can all 
be written in terms of the two curves Z,+(q) and Z ( q )  as follows: 

t (3.10) 

The calculations of 2t2(q) are independent in the sense that equations (2.17) map 
Z$(q) onto itself and also map Z$(q) onto itself. Figure 4 shows typical positive 
solution curves Z t 2 ( q )  for H ( q )  = A sin(2nq) when A = 0.008 and A = 0.08. 

The structure of the solution curves depends strongly on the magnitude of the 
similarity parameter A .  Note that, as A -+ 0,  q2 -+ ql + 4 ( = 2) and Z,+(q) -+ Z,+(q- 3)) 
q2 < q < 1 +ql; otherwise v2 > ql + and maxZ,+(q) > maxZ,t(q). When A is in the 
small-rate range, 0 -= A < A,  < 1, the curves 2: and WF, (i,j) = (1,2) and (2,1), are 
indistinguishable. Then there are apparently two single-valued solutions, one positive 
and one negative, connecting consecutive saddle points. These are analogues of 
separatrices for ordinary differential equations. As A increases these curves become 
distinct for A > A,. While there is no proof of the existence of A, > 0, the curves are 
not distinguishable on a scale of physical interest until A > 0.1. 

When A, < A < A,, where A, is approximately 1.0, we say A is in the finite rate 
range. For A in this range the curves Z:, (and hence by equations (3.10) Z;, and 
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FIGURE 4. Solution curves Z:(v). y , (A)  < 7 < v 2 ( A ) ,  and Z z ( v ) ,  qz d 7 < ql+ 1 of equation 
(2.17) when A = 0.008 and A = 0.08. The dashed curve ( A  = 0.008) has been scaled by a 
factor 20/3. 

1.1 

0.8 

0.5 

0.2 

-0.2 

-0.5 

FIGURE 5. Multi-valued solution curves .Z:(v), and Z:(v) of equation (2.17), for A = 0.2 (-) 
and A = 0.5 ( -  - -). The dashed curve has been scaled down by a factor 3. 

W e 2 )  are multi-valued. This is illustrated in figure 5 for A = 0.2 and A = 0.5, where 
i t  is seen that the size of the multi-valued loops increases with A .  The mapping 
algorithm (2.17) is not affected by the multi-valuedness as it does not depend on 
derivatives of 2. Equations (2.15)-(2.17) imply that Z(7) becomes multi-valued 
whenever 

lfF’(8) = i+Z’(s)+ &H’(s)-+-O. 

This corresponds to the ‘breaking time ’ of some part of the propagating signal being 
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0.25 
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-0.25 

FIGURE 6. Multi-valued solution curves 2: and W: intersect on 
intersect on q 2  < r]  < 
(yz, Z:(yz)) e ta ,  and (xo, Z $ ( z o ) )  maps onto (xz, Z:(x,)) etc. under equation (2.17). 

less than its travel time from x = 1 to x = 0 and back. Such a phenomenon cannot be 
described by a theory which assumes that waves propagate according to acoustic 
theory in which there is no distortion. The theories of quadratic resonance proposed 
by Galiev et al. (1970) and Keller (1975) both assume that waves in the tube propagate 
without distortion. 

In the finite range the invariant curves Z = Z?(p) and 2 = W,+(p) (and similarly 
2 = Z,+(p) and Z = Wl+(p)) are distinct and intersect an infinite number of times on 
[p,, p z ] .  This is illustrated in figure 6 for A = 0.25. The curve Z f ( p )  is intersected on 
[p,, p z ]  by W,f(p) and Z,f(p) is intersected on [p,, pl + 11 by W z ( p ) .  The eight possible 
solution curves of equation (2.9) on [pl, pl+ 13 are denoted by 

F t 2  = Zt ,+&H+$ and G,tz = W t , + $ H + i .  (3.11) 

The points of intersection at  yo = & and xo = 1 are recognized by noting that 

F1+($) = G,+($) and Ft(1) = G,+(l) ,  (3.12) 

as H(&) = H(l) = 0. Each generates a distinct sequence of intersection points on 

[al, 71 + 1 1 9  (yi, F+(yi))  and (xi,P+(xi)), -00 < i < 00, (3.13) 

under the mapping PS (equation (2.9)) and the periodicity of F .  These are all of the 
intersection points on [pl, p 1  + 13, and the limit points of these sequences are the fixed 
points at  p = p,, p z  and p 1  + 1. Thus, under the mapping PS, F t ( p )  maps onto P,f(p) 
and vice versa, on noting the presence of $ in the definition (2.16). However, as 
equation (2.17) is derived by using equation (2.9) twice, Z?(p) and Z,f(p) map onto 
themselves under the mapping (PS),. In fact, under (PS),, (yi, Zi+(y,)) -+ (Y,+~, Zi+(y,+,)) 

d r]  < v 2 ,  2: and W: 
1, for A = 0-25. The intersection point (yo, Z:(y,)) maps onto 

equations (3.10) imply that 
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-0.1 -1 
FIGURE 7.  The continuous segment of B’;(q), s; < 7 < s:, maps into the loop abcde in P:(y), 

7: d 7 d 7:. A shock is inserted at 7, using the equal-area rule. 

and (xi, Zj+(x&) --f (xi+2, Z ~ + ( X ~ + ~ ) ) ,  j = i , 2 .  In addition, it can be shown that the areas 
bounded by curves such as Z,+ and Wg, between successive points of intersection, are 
all equal, and their common value is 

j; [W,+(r)-Z,+(r)ldr. 

The proof of a similar result is given in Seymour & Mortell (1981). 

(3.14) 

4. Construction of discontinuous solutions 
In the small-rate range there are two continuous separatrices connecting consecu- 

tive saddle points. In the finite range the equivalent curves through the saddle points 
are multi-valued. Here we show how single-valued, but discontinuous, separatrices 
are constructed from these. The locations of the discontinuities are determined by 
the ‘equal area rule’ for weak shocks. In both the small- and finite-rate ranges a 
composite of the separatrices is chosen to satisfy the mean condition (2.10) in the 
quadratic-resonance region. This introduces further shocks into the solution. 

4.1. Discontinuous separatrices 
It was shown in $ 3  that in the finite-rate range the curves F$(y )  and F’o+(r) each have 
an infinite number of multi-valued loops. These must be made single-valued by 
inserting shocks to ensure the solutions are physically acceptable. 

The multi-valued loop in -E”,+(r) on 7; < 7 < $, illustrated in figure 7, is the image 
of F~+(T / )  for s: < s ,< sz under the mapping (2.9). The points of infinite slope of F i ( 7 )  
at 7 = 7: and $ are the images of Fl+(sF) and B’:(s:), where 

dFt(s:)/ds = dF,+(s:)/ds = - 1, as dr /ds  = 1 + F’(s). 

A discontinuity is inserted in F:((p) at 7 = 9 , ~ :  < 9 c 7:. The points marked a and e 
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at q = @ are the images of F:(s-) and Ff(s+) .  They correspond to the amplitudes 
Fl+(s-) and Fl+(s+) which leave x = 1 at  the distinct times t = wls- 
and return simultaneously at  t = w-l@. Thus, by equation (2.9), 

= s-+Fl+(s-) = s++Ft(s+). 

Equations (4.1) are equivalent to two of the weak-shock conditions 
1974). The third condition is the equal-area rule, which, in the notation 

F(s)  dS - &(F(s+) + F(s-))  (S+ - S-)  = 0. s1B_i 
Using equations (2.9) and (4.1), the area enclosed by the loop abcde is 

F$(r)  dy = s,”-’ F1+(s) ds - i ( F t 2 ( s - )  - Flf2(s+)) = 0, 
abcde 

and t = w-%+ 

(4.1) 

(see Whitham 
of 5 2, becomes 

(4.3) 

by equations (4.1) and (4.2). Thus the weak-shock conditions imply that each multi- 
valued loop in F$(q) is made single-valued by inserting a discontinuity which cuts off 
lobes of equal area. We denote by SF$(q) the single-valued, but discontinuous, 
function derived from F i ( 9 )  by using the weak-shock conditions. The results of $ 3  
that the areas bounded by the curves F$(T)  and Ql+(r) between the intersection points 
xi and yi+l and between yi+l and xi+2 are equal implies that the associated shock lies 
in (xi,xi+J. Thus XF$(q) contains an infinite number of shocks in the interval 
1 < 4 < ql+ 1.  Similarly shocks are inserted to replace the multi-valued loops in 
F;(q) and FF(7) to give the functions XF, and SFF. 

We must now check that these single-valued, discontinuous functions are solutions 
of equation (2.9)) i.e. that 8 F t ( q ) ,  rll 6 9 < qz, maps into SF$(q) ,  T~ 6 9 6 rl+ 1, 
using equations (2.9) and (4.2)) and vice versa. Alternatively, the function 

must map onto itself using equations (2.9)) (4.2) and periodicity. To show this we 
again break up equation (2.9) into the two mappings X and P. The simple wave 
mapping, S ,  is area preserving and, when it is applied to F+(T,I) and the equal-area 
rule is used, it yields a distorted function, P+(q),  with shocks of the same strengths 
and locations as F+(v). On noting that equation (2.9) may be written 

F(9)  = P(9)  + f u r ) ,  (4.5) 

and that the discontinuities of F+ and P+ coincide in strength and location, clearly 
F+(q) maps into itself under equation (2.9) and hence is a discontinuous invariant 
curve. The function F-(q), rl 6 q < ql+ 1, is constructed in a similar manner from 
SF:(?), 9 2  < 9 G q l +  1, and XF;(T))  71 6 9 6 T Z -  

Discontinuities may also be inserted in the curves t2e.J~) to make them single- 
valued. While a discontinuity introduced in F?2(9) is compressional and is main- 
tained, a discontinuity in G;2(9) produces an expansion fan under the simple wave 
mapping. Hence the single-valued functions SG? z ( r )  are not solutions of equation 
(2.9) and cannot be used. The direction of the jumps in the Fk(q)  curves is consistent 
with the entropy condition. The discontinuous separatrices F*(T) are illustrated in 
figure 8 for A = 0-3. 
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FIGURE 8. Ft(v), qI < ?) < T ~ ,  are separatrices of equation (2.9) corresponding to second-order 
fixed points, for A = 0.3, which contain shocks. 

4.2. Quadratic resonance region 

In  fjQ3 and 4.1 we have constructed continuous separatrices in the small-rate region 
and discontinuous separatrices in the finite-rate region. From these separatrices we 
have constructed the two functions F*(y), yl < y < yl + 1.  Using equations (2.7) and 
(2.10), the functions F*(q) define the two frequencies 

A solution curve P ( y )  of equation (2.9) which lies either above F+(y),  and hence 
corresponds to a frequency w > w+, or below F-(y), corresponding to w c w-, does 
not contain a fixed point of the mapping  PA!^)^ and hence the point in the A-A plane 
associated with F lies outside the quadratic-resonance region. Thus for a given value 
of A (and, hence, given Jl*(y)) the frequencies w*, calculated from equation (4.6), 
correspond to values of A a t  the edge of the quadratic resonance region. The boundary 
of the quadratic-resonance region for 0 < A 6 8 is given by 

(4.7) 
and can be found from equation (4.6) by constructing the function F-(y) for various 
values of A .  This procedure can be simplified by using the symmetries of the solutions. 

A = A,(A) = ~ ( w - - o , ) ,  

Defining 9-*(r) = F*(y) - 4, 
conditions (2.9), (3.3) and (4.2) imply that 

and that, by equation (3.10), 

(4.9) 

(4.10) 
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FIGURE 9. Solution curve of equation (2.17) for A = 0.08 at the edge of the quadratic resonance 
region, A = 0.4745, with continuous periodic solution curves for A = 0.465, 0.44, 0.425. 

Thus, by equations (4.6)-(4.8) and (4.10), 

A@) = 8 + 4Jl7'+l S - ( y )  dy .  (4.11) 

Note that 9 - ( y )  < 0 and is continuous for 1 < y < yl+ 1 ,  so that A,(A) < 6 ,  and 
A,(A) can be calculated from equation (4.11) without the complications of shock 
fitting. The curve A = A,(A) is shown in figure 1. 

In  the small-rate range the curve A = A,(A) coincides with the transition curve 
separating the regions in the A--A plane corresponding to continuous and dis- 
continuous periodic solutions of equations (2.9) and (2.10). Lying above F+ and 
below F- are continuous periodic curves which do not contain fixed points of the 
mapping (2.17). These curves were constructed in Mortell & Seymour (1979), where 
it was noted that in the small-rate range 

A,(A) -N 4-An-l. 

Several continuous solutions, together with the limiting curve F-(y) ,  are illustrated 
in figure 9 for A = 0.08. The separatrix F-(y) yields A = 8 - 0.0255, on using equation 
(2.10), and hence for A = 0.08 there are no continuous periodic solutions for 
0.4745 < A < 0.5. 

In the finite-rate range the edge of the quadratic-resonance region does not corres- 
pond to the transition from discontinuous to continuous solutions of equation (2.9). 
Any point in the region of the A-A plane bounded by the transition curve, the curve 
A = A,(A) and the curve A = A,(A) corresponds to a solution of equation (2.9) contain- 
ing shocks. In  principle, such solutions can be constructed by a procedure similar 
to that given in this paper by using higher-ordered fixed points of the mapping PS. 
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An alternative form for the locations of the critical points at 7, and 7, can be found 
by writing equation (4.9) in terms of F-(7). Then 

(4.12) 

while equations (2.9), (2.16), (3.4) and (4.2) yield 

I;;+1 F+(9) a7 - /?‘F+(7)  dy = 9[p+2(72) -k’+2(71)1 = W ( 7 2 ) .  (4.13) 
11 

Then equations (4.12) and (4.13) imply that q1 and q2 are given by 

H(rl) = 1 - 47, and W r 2 )  = -%4, (4.14) 

where F(7,) = 1 - 27, and F(q2) = 29,. (4.15) 

The simple forms (4.14) and (4.15) enable us to check the interpretation that a critical 
point corresponds to an amplitude which completes two cycles in the tube in unit time. 
We consider the signal F(r l ) ,  given by equation (4.15), which leaves x = 1 a t  7 = 7,. 
Equations (2.7)-(2.9) then imply that the signal returns to x = 1 at 7 = 1 +n-vl, 
and is reflected with amplitude 2v1, as required by equation (4.15). This signal sub- 
sequently returns to x = 1 at 7 = 2n+ 1 +rl with amplitude, on reflection, equal 
to 1 - 2q1. This confirms the periodicity associated with critical points, and is most 
easily checked for the case n = 0 when w = 1. The characteristic in x-t space emanating 
from a critical point is the ‘everlasting characteristic’ of Betchov (1958). 

4.3. Solution in the quadratic-resonance region 
The separatrices F*(7) in $4.1 are the solution curves corresponding to the applied 
frequencies w = w*. As in Seymour & Mortell (1980) for the linear resonance region, 
solutions corresponding to frequencies in the range w- < w < w+, i.e. when 

1k-q < A , ( 4  (4.16) 

are constructed by taking a composite of the separatrices to satisfy the mean condition 
(2.10). This introduces two further shocks into the solution, whose locations are 
uniquely determined by the mean condition. 

It is now more convenient to work with F ( 9 )  and hence we define 

9+(7), 91 6 9 < x,, 
9- (9 ) ,  xs 6 9 < 9 2 ,  

9+(7), 72 9 < Ys ,  [ 9-(7), Y s  6 7 < 7 l +  1 .  (4.17) 

The direction of the shocks is again a consequence of the basic functional equation as 
discussed in $4.1. The shock locations, xs(A) and ys(A), are chosen to satisfy the mean 
condition (2.10). Integration of 9(7) on 72 < 7 6 ql+  1 and use of equation (2.9) 
yields 

F ( 7 )  = 

a ( s )  ds - $[9(~+) + 9 ( x - ) ]  (x+ - x-)) , (4.18) 
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FIQURE 10. The solution of equation (2.9) F ( 7 )  for rl < q < ql+ 1 when A = 0.3, A = 0.57 is 
the full curve. Shocks in the separ$,rices are at qs and &, while shocks joining the separatrices 
are at x, and ya.  The dashed curve, F ( y ) ,  results from the application of the simple wave mapping 
(2.12) on P(7) .  

where y, = X f  + 4 + S- (x+)  = x- + g + S+(x-). (4.19) 

The equal-area rule, equations (2.10), and the definition (3.4) of the critical points a t  
ql and qz, imply that equation (4.18) reduces to 

(4.20) 

The condition (4.20) is a simple rule which uniquely determines the locations of the 
two shocks; for example 

%A+) = 4, YS(8) = 1, 

xs(Aq) = 72, Ys(Aq) = 71 + 1, 

xs( -AJ = 71, YA -4 = 72. 

It is easy to check that the discontinuous function F(q) ,  constructed by using equa- 
tions (4.8) and (4.20), is a solution of equation (2.9) on using the equal area rule. This 
is illustrated in figure 10 for A = 0.30, A = 0.57. For A = 0.57, the discontinuous 
separatrices contain shocks at  q8 and &, while they are joined by shocks at x, and y,. 
The mapping (2.12) on F gives the function P which, on using the equal-area rule, has 
shocks a t  the above four locations. The shocks a t  qs and x, coalesce to give the shock 
at ys; the shock at  ys maps into that a t  x,; the shock at  tS maps into that a t  qs while 
part of the continuous segment of F ( q )  between ql and 7, breaks to form the shock at 
5,. Recall that, by equation (2.13), the addition of P ( q )  and H(y) then gives F(q) .  
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5. Discussion 
Here we show that in the small-rate limit (A-tO) the functional equation (2.17) 

reduces to a nonlinear ordinary differential equation. However, the shock strengths 
and their locations are not uniquely determined by the limiting differential equation. 
This contrasts with the functional equation which uniquely determines the full 
solution of the physical problem. We illustrate the finite-rate theory by exhibiting 
typical pressure variations on the piston and on the closed end. We point out the 
finite-rate features of the solutions presented and, finally, comment on the com- 
parison of theory and experiment. 

The small-rate approximation is found very simply by expanding the functional 
equation (2.17) for 121, ]HI < 1 and retaining only quadratic terms. The resulting 
equation is 

on using the symmetry property H(7 + +) = - H(7)  and the notation 2 -+ 2, as A -+ 0. 
When H is given by equation (2.1 1) the critical points of equation (5.1) are located a t  
T~ = 0, ;E, $, 2. It was noted in 93 that the critical points of the functional equation 
(2.17) are at  T~ = 0,  ql, 4, yZ and that T ~ - +  $ and yZ -+ 2 as A -+ 0. The saddle points at 
(&, 0) and ( 2 , O )  are connected by separatrices 

2,Z; = - t H H ' ,  (5.1) 

z*(?/) = 5 &i I C O S ( 2 m / ) I .  (5.2) 

(The curve z+(q) is similar to the dashed curve in figure 4 where A = 0.008.) Thus 
from the mean condition (2.11), when 

the solution curves of equation (5.1) are continuous and periodic. There are no con- 
tinuous periodic solutions for I $ - A 1 < A / n  and discontinuities connecting the 
separatrices z*(q) must be inserted. It was shown in Seymour & Mortell (1973) that 
the entropy and mean conditions uniquely determine the small rate solution in the 
linear resonance region. This is not so in the quadratic resonance region, and is vividly 
illustrated by considering the case h = &j. The 'solution' of equation (5.1), 

(5.4) 

satisfies the entropy and mean conditions for any 0 < $ 6 +. In  particular, when 
$ = 0 , i  the solutions are continuous. When equation (5.1) is viewed as the limit of 
the functional equation (2.17), then equation (4.20) implies that 

and hence q5 = 2 when A = $. Alternatively, it  can easily be checked that functions 
obtained by any other choice of ys in equation (5.4) do not satisfy the mapping (2.9). 
The small-rate theory outlined above is equivalent to that given by Galiev et al. (1  970) 
and Keller (1 975). 
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On using t'he mean condition (5.5), the small-rate solution Z o ( y )  always contains 
two shocks a t  x, and y,  = X, + +, where x, is given by 

1 -2A 
sin (snx,) = 

1-2A,(A)' 

These shocks are always of equal strength and a distance + apart. In contrast, the 
solution (4.17) of the functional equation does not have these properties in general. 
This is illust'rat'ed in figure 10 for A = 0.3, A = 0.43, where the shocks connecting the 
separatrices are a t  x,, y, with ys - x, = 0.36. There is an additional shock at qs in the 
separatrix F+(r). 

In  the small-rate theory the signal propagates undistorted as in linear theory 
(although the signal shape is calculat'ed from the nonlinear equation (5.1)). Hence the 
shock strength on the closed end is the same as that on the piston. This is not the case 
in the finite-rate theory, as is seen in figures 1 1  and 12. I n  figure 11 we compare the 
pressure on the piston calculated according to finite-rate theory, P(r), and linear 
theory, PL(r), with the correction to linear theory in a regular expansion in the 
amplitude, P'(T~), fore = 0.02 and w = 0-74 ( A  = 0.164 and A = 0.48). The formulae 
for P, PL and P, are given in equations (6.7)-(6.10) of Morbell & Seymour (1979). 
Note that, as A + + ,  P'+O and e3-+co, while P remains finite. P(r )  contains a 
shock of strength 0.128 a t  x, = 0.413 and a shock of strength 0.208 at y, = 0.953. 
For the same values of the physioa,l parameters, figure 12 illustrates the correspond- 
ing pressures a t  the closed end, x = 0. The linear pressure PLo(p) is given by 

while the second-order pressure, PRo(r), is given by 

The pressure on the closed end, Po(v)) calculated from the finite-rate theory is 

where 

(5.9) 

(5.10) 

and F is the solution of equation (2.9) for A = 0.164 and A = 0.48. Po(r) contains a 
shock of strength 0.225 a t  x, = 0.684 and a shock of strength 0-231 a t  y,  = 1.18. We 
note that the shock strengths have changed owing to the distortion of the wave form 
in travelling from the piston to the closed end. This distortion arises through the 
transformation (5.10); acoustic propagation corresponds to 7 = 0 + 4. 

The pressure response curve, indicating maximum and minimum pressures and 
shock strengths on the closed end for the range of frequencies 0.726 < w < 0.777 
(about o = Q,) and e = 0.03 are illustrated in figure 13. For this amplitude and 
frequency range, A varies from 0.158 to 0.181. Figure 13 includes the maximum and 
minimum values of Po, and the values of the pressure a t  the top and bottom of 
each shock in Po. For most frequencies in this range there are two shocks, but multiple 
shocks appear as the frequency approaches the edge of the quadratic resonance 
region. Then, for example, the shock with maximum T, and minimum B, splits into 
two shocks, the first from T, to B, and the second from T, to B,. 
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FIGURE 11. Pressure on the piston for A = 0.164, w = 0.74 (near al), corresponding to E = 0.02. 
-- , present theory: - -, linear theory: - - - -, corrected linear theory. 

Pressure wave forms containing shocks have been observed for frequencies in the 
quadratic resonance region by Galiev et al. (1970) and Zaripov & Ilgamov (1976). 
Galiev et al. (1970) also gave a theoretical solution which extended the small-rate 
theory of Chester (1964) to the quadratic-resonance region. In our notation, they 
claim that there is an arbitrary phase shift between Z and SH when constructing F 
from equation (2.16). (See their equation (2.7) et seq.) Their figure 4 corresponds to 
zero phase shift and agrees with the theory given here and that of Keller (1976). 
Their figure 5 results from introducing a phase shift of 4 in the argument of Z(q) (a 
shift of 8;. in their notation) and seems to give better agreement with experiment t h m  
in figure 4. In our analysis there is no ambiguity about the phases and, indeed, their F, 
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FIGURE 13. Pressure response curve a t  the closed end for E = 0.02, 0.726 < o < 0.777 (about 
w = ill). Curves indicate maximum pressure PM;  minimum pressure P,; pressure at top and 
bottom of shocks Tl,2,3,p and B,,,,,,,; maximum and minimum pressures from PR,,. 

as given by their equation (2.13) with a phase shift of $71, does not satisfy their equa- 
tion (2.12). 
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